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Abstract This paper presents a study on the role of dynamic motions in the
creation and perception processes of action-art paintings. Although there is a lot
of interest and some qualitative knowledge around, there are no quantitative models
in the scientific computing sense about this process yet. To create such models and
implement them on a robotic platform is the objective of our work. Therefore, we
performedmotion capture experiments with an artist and reconstructed the recorded
motions by fitting the data to a rigid-body model of the artist’s arm. A second
model of a 6-DOF robotic platform is used to generate new motions by means
of optimization and optimal control algorithms. Additionally, we present an image
analysis framework that computes certain image characteristics related to aesthetic
perception and a web tool that we developed to perform online sorting and cluster
studies with participants. We present first results concerning motion reconstruction
and perception studies and give an outlook to what will be the next steps towards an
autonomous painting robotic platform.

1 Introduction

The cognitive processes of generating and perceiving abstract art are – in contrast to
figurative art – mostly unknown. Within the process of perceiving representational
art works, the effect of meaning is highly dominant. In abstract art, with the lack
of this factor, the processes of perception are much more ambiguous, relying on
a variety of more subtle qualities. In this work, we focus on the role of dynamic
motions performed during the creation of an art work as one specific aspect that
influences our perception and aesthetic experience.
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1.1 Action Paintings: Modern Art Works Created by Dynamic
Motions

The term “action painting” was first used in the essay “The American Action
Painters” by Harold Rosenberg in 1952 [1]. While the term “action painting” is
commonly used in public, art historians sometimes also use the term “Gestural
Abstraction”. Both terms emphasize the process of creating art, rather than the
resulting art work, which reflects the key innovation that arose with this new form
of painting in the 1940s to the 1960s. The artists often consider the physical act
of painting itself as the essential aspect of the finished work. The most important
representative of this movement is Jackson Pollock (1912–1958), who introduced
this new style around 1946. Clearly, artists like Pollock do not think actively about
dynamic motions performed by their bodies the way, mathematicians from the area
of modeling and optimal control do. But from a mathematical and biomechanical
point of view it is very exciting that one of the main changes they applied to their
painting style in order to achieve their aim of addressing the subconscious mind has
been a shift in the manner they carry out their motions during the creational process

1.2 Understanding the Perception and Generation of Art Works

Since humans possess many more degrees of freedom than needed to move a hand
(or any end-effector that they might be using for painting, like brushes or pencils),
the motions executed by an artist can be seen as a superposition of goal directed
motions and implicit, unconscious motions. The former are carried out to direct his
hand to the desired position, the latter are the result of some unconscious process
defining a particular style of the motion. From a mathematical perspective, this can
be seen as an implicitly solved optimal control problem with a certain cost function

Fig. 1 An action painting in
the style of Jackson Pollock,
painted by “JacksonBot”
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Fig. 2 Schematic overview of experimental and computational parts of study

relating to smoothness, jerk, stability or energy costs. The assumption that human
motion can be described in this manner has been widely applied and verified, for
example in human locomotion. For details, see [2] or [19].

When looking at action paintings, we note that this form of art generation is a
very extreme form of this superposition model with a negligible goal-directed part.
Therefore, it is a perfect basis to study the role of (unconscious) motion dynamics
on a resulting art work.

The goal of our project is to use state-of-the-art tools from scientific computing to
analyze the impact of motion dynamics both on the creational and perceptual side of
action-painting art works. Figure 2 shows a schematic overview of the experimental
and theoretical parts of our project. On the one hand, we perform perception studies,
in which participants are shown different action paintings and then have to describe
how they perceive these paintings. On the basis of these experiments, models for the
perception of action paintings are established. On the other hand, we have conducted
motion capture studies in which an artist generated action paintings. The painting
process was recorded using several inertia sensors on the artist’s arm and hand which
provide both kinematic and dynamic data. On the basis of these recordings, we
reconstructed and analyzed the artist’s motion. Results from both approaches – on
perception and on the generation of action art – will later be implemented on a
robot for validation purposes. In this paper, we present some preliminary results
on modeling, motion reconstruction as well as on perception studies and our image
analysis framework.

1.3 Paper Outline

This paper is organized as follows: In Sect. 2, we will give an introduction to the
current theory of art perception and an overview of the tools we developed for
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image analysis and online perception experiments. In Sect. 3, we first briefly discuss
the mathematical background of our work by introducing optimal control problems
and the direct multiple shooting method. Then, we describe the reconstruction of
recorded motions from an artist using multibody dynamics and optimal control
theory. Thereafter, we present our plan to create new motions for our robotic
platform by solving an optimal control problem to compute the joint torques.
Finally, in Sect. 4, we conclude our current findings and present the next steps in
our project plan.

2 Modeling the Perception of Art Works

When we talk about models for art perception in this paper, we have to state that we
do not want to create a new qualitative model for art perception but we want to find
quantitative data that link the motion dynamics of the creation process to viewers’
aesthetic experience when looking at the painting. Once we find this data, we aim to
integrate it into existing perception models, possibly modifying or improving them.
Our main goal is, however, to develop a simple mathematical model that allows our
robotic platform to continuouslymonitor its painting process and to adapt its motion
dynamics considering previously given goals.

2.1 Previous Work/State of the Art

The perception of art, especially abstract art, is still an area of ongoing
investigations. Therefore, no generally accepted theory including all facets of art
perception exists. There are, however, different theories that can explain different
aspects of art perception. One example of a theory of art perception is the one
presented by Leder et al. in [3] (see Fig. 3). In the past, resulting from an increasing
interest in embodied cognition and embodied perception, there has been a stronger
focus on the nature of human motion and its dynamics regarding neuroscience or
rather neuroaesthetics as well as psychology and history of art. There are several
results, showing that we perceive motion and actions with a strong involvement of
those brain regions that are responsible for motion and action generation. These
findings support the theory that the neural representations for action perception and
action production are identical (see, e.g. [4]). The relation between perception and
embodied action simulation also exists for static scenes (see, e.g. [5]) and ranges
even to the degree, where the motion is implied only by a static result of this very
motion. For example, Knoblich et al. showed in [6] that the observation of a static
graph sign evokes in the brain a motor simulation of the gesture, which is required
to produce this graph sign. Finally, in [7], D. Freedberg and V. Gallese proposed
that this effect of reconstructing motions by embodied simulation mechanisms will
also be found when looking at “art works that are characterized by the particular
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Fig. 3 Figure taken from Leder et al. [3]

gestural traces of the artist, as in Fontana and Pollock” – a conjecture that has first
been observed empirically by Taylor et al. in [8].

2.2 Perception Experiments

This section describes our perception experiments which are performed using a web
interface that we created for this purpose.

We performed two pre-studies to find out, whether human contemplators can
distinguish robot paintings from human-made paintings and how they evaluate robot
paintings created by the robot JacksonBot [17] using motions that are the result
of an optimal control problem with different mathematical objective functions. In
the first study, we showed nine paintings to 29 participants, most of whom were
laymen in arts and only vaguely familiar with Jackson Pollock. Seven paintingswere
original art works by Jackson Pollock and two paintings were generated by the robot
platform JacksonBot. We asked the participants to judge which of the paintings
were original paintings by Pollock and which were not, but we intentionally did
not inform them about the robotic background of the “fake” paintings. As might
be expected, the original works by Pollock had a higher acceptance rate, but, very
surprisingly, the difference between Pollock’s and JacksonBot’s paintings was not
very high (2:74˙ 0:09 vs. 2:85˙ 0:76, on a scale of 1–5).

In the second study, the participants were shown ten paintings created solely
by the robot platform, but with two different objective functions (maximizing
and minimizing overall angular velocity in the robot arm) in the optimal control
problem. The participants easily distinguished the two different painting styles.

After the pre-studies, we developed a more sophisticated web-based platform for
further, more detailed investigations on this subject.
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The first goal of our detailed perception experiments is to find out about the way,
viewers judge action-art paintings regarding similarity. Therefore, we present a set
of stimuli consisting of original action-art paintings by Pollock and other artists and
added images, that were painted by our robot platform. Participants are then asked
to perform different tasks with these stimuli.

The web-interface provides three different study types for perception analysis. In
the first task, the viewers are presented three randomly chosen paintings and asked
to arrange them on the screen according to their similarity. As a result, for every set
of three paintings A;B;C , we obtain a measure dABC D distAB

distBC
for the similarity of

two paintings in comparison with another pair of two paintings.
In the second task, people are basically asked to perform a standard sorting

study, i.e. they are asked to combine similar paintings in groups and to give
some information about their reasons for the chosen groups (Fig. 4). The results
of this task are used to validate the information obtained by the previous one and,
additionally, they are used to gain more information about the attributes and traits,
people seem to use while grouping.

Finally, participants are shown images individually and are asked to judge them
on different absolute scales. The results from this task are used to obtain an overall
scaling for the first two tasks.

Once, we have obtained this information for a sufficient amount of robot
paintings, we can use standard procedures from statistics like fuzzy cluster analysis
or multidimenstional scaling to determine whether viewers differentiate between
paintings created by different objective functions or rather whether they rate
paintings created by the same objective function as similar. Additionally, we can link
the given cluster descriptions to certain objective functions (e.g. paintings created by
maximum jerk motionsmight be clustered together and be described as “aggressive”
or “dynamic”).

Fig. 4 Interface for web-based perception studies
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2.3 Perception Models

As stated in Sect. 2, we want to develop a model that allows our robotic platform to
monitor its painting process using a camera system and – based on an evaluation of
its current status – to change its movement according to predefined goals. Therefore,
we developed an image analysis software tool based on OpenCV for details, see [9]
that uses a variety of different filters and image processing tools that are related to
aesthetic experience. For an overview on the software, see [10]. To give only one
example, Taylor et al. showed in [11] that fractal-like properties of art works might
be of interest, particularly when looking at action-art paintings. We address the
question of fractal-like properties by computing two values: the fractal dimension
D using the “box counting”method and the Fourier power spectrum using FFT. The
fractal dimension is calculated by overlapping the given image with a continuously
refining two-dimensional grid of width !. If N."/ is the number of “boxes” that
cover a part of the object of interest, the fractal dimension is given by:

D D lim
"!0

logN."/

log 1
"

(1)

By linking these low-level image features to the viewer’s judgements described
in the previous paragraph, the robot will be able to predict the most likely judgement
of a viewer and to adapt its movement accordingly.

3 Modeling the Generation of Art Works by Dynamic
Motions

As mentioned in Sects. 1.1 and 1.2, the generation of action paintings uses motions
that arise from the subconscious of the artists. Therefore, we cannot try to generate
similar motions by traditional path planning. Instead, we apply our approach of
generating motions as the result of an optimal control problem, which is much more
suited to address this type of motions.

3.1 Mathematical Background

To perform mathematical computations on motion dynamics, we first need to create
models of a human and the robot arm. In this case, by “model”, we mean a physical
multi-body model consisting of rigid bodies which are connected by different types
of joints (prismatic or revolute). Depending on the number of bodies and joints,
we end up with an certain number of degrees of freedom and a set of generalized
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variables q (coordinates), Pq (velocities), Rq (accelerations), and ! (joint torques).
Given such a model, we can fully describe its dynamics by means of

M.q/ Rq CN.q; Pq/ D ! (2)

where M.q/ is the joint space inertia matrix and N.q; Pq/ contains the generalized
non-linear effects. Once we have such a model, we can formulate an optimal control
problem using x D Œq; Pq"T as states and u D ! as controls. The OCP can be written
in a general form as:

min
x;u;T1

Z T1

T0

L.t; x.t/; u.t/; p/dt C ˚M.T1; x.T1// (3)

subject to:

Px D f .t; x.t/; u.t/; p/ (4)

g.x.t/; u.t/; p/ ! 0 (5)

rT0.x.T0/; p/C rT1.x.T1/; p/ D 0 (6)

where p contains several model parameters which in our case are fixed and g
contains constraints like joint and torque limitations. Note, that all the dynamic
computation from our model is included in the RHS of diff.eq. .4/, The objective
function is given by the sum of the Lagrange term

R T1
T0
L.t; x.t/; u.t/; p/dt and the

Mayer term ˚M.T1; x.T1//. The former is used to address objectives that have to be
evaluated over the whole time horizon (such as minimizing jerk), the latter is used
to address objectives that only need to be evaluated at the end of the time horizon
(such as overall time). In our case, we will often only use the Lagrange term. For
details about the specific problems we used, see Sects. 3.3 and 3.4.

To solve such a problem numerically, we apply a direct multiple shooting
method which was developed by Bock and Plitt [12] and is implemented in the
software package MUSCOD-II, which is maintained and developed further at
IWR. It discretizes the continuous formulation of our optimal control problem by
dividing the time horizon in several so-called multiple shooting intervals Ij . This
discretization is used both for controls and states, the latter are parameterized as
starting values sj for an initial value problem on each multiple shooting interval Ij .
The controls are given by simple base functions NujIj (e.g. piece-wise constant, piece-
wise linear or spline functions) for each interval. Additional continuity conditions

x.tjC1; sj ; NujIj / " sjC1 D 0

are added for each multiple-shooting-node to ensure a continuous solution. Further
discretization of the constraints and objective function leads to a nonlinear optimiza-
tion problem:
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min
y
F.y/ (7)

subject to:

g.y/ ! 0 (8)

h.y/ D 0 (9)

where y contains the variables sj , T1 and the parameters describing the control
base functions NujIj . This problem is then solved by using a specially tailored
sequential quadratic programming (SQP) method. For a more detailed description
of the algorithm, see [12, 13]. Regarding dynamics computation, we use the Rigid
Body Dynamics Library (RBDL) [14] which is an highly efficient C++ library for
forward and inverse rigid body dynamics and includes all major algorithms like the
articulated body algorithm and a recursive Newton-Euler algorithm.

3.2 Previous Work/State of the Art

Optimization and optimal control techniques are very powerful tools that can be
applied concerning many aspects of our research. In this specific case, we use
optimization methods to compute the full trajectory of our robotic platform. Our
basic approach is that humans are unwittingly applying optimization in different
areas like motion control or complex problem solving. As mentioned in Sect. 1.2,
this approach of characterizing human motions as solution of an optimal control
problem has been successfully applied in several areas, particularly in walking
and running motions (see [2, 15]), but also (very recently) regarding emotional
body language during human walking (see [16]). Concerning the application of
our approach on painting motions, a first proof of concept has been given by
our previous robotic platform “JacksonBot”. Even though with “JacksonBot”, the
optimization was purely kinematic with no respect to motion dynamics, paintings
created using different optimality conditions were clearly distinguished by viewers
(see [17]).

3.3 Experiments with Artists

In order to study the way, real human artists move during action-painting, we
performed motion-capture studies. We started with several experiments where we
recorded the motion of a collaborating artist and plan to redo the same experiments
with other artists for validation purposes. We used three inertia sensors to record
dynamic dataDcapture for each of the three segments of the artist’s arm (hand, lower
arm, upper arm). To fit this data to our 9 DOF model of a human arm that is based on
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data from deLeva [18], we formulated an optimal control problem which generates
the motion x.t/ D Œq.t/; Pq.t/!T and the controls u.t/ D ".t/ that best fit the
captured data with respect to the model dynamics f .

min
˛

X

i

jjD!.x.ti I˛// !Dmocap.ti /jj22; (10)

D!.x.t I˛// resulting from a solution of

min
x;u

T1Z

T0

"
nX

iD1
˛iLi .t; x.t/; u.t/; p/

#
dt (11)

subject to:

Px.t/ D f .t; x.t/; u.t/; p/ (12)

rT0.x.T0/; p/C rT1.x.T1/; p/ D 0 (13)

g.x.t/; u.t/; p/ " 0 (14)

The constraints in this case are given by the limited angles of the human arm joints
and torque limitations of the arm muscles. Figure 5 shows the computed states and
the fit quality of the acceleration data for a very dynamic, jerky motion. Note that
for this type of motion, the fact that the angle values are approaching the joint
limitations is plausible.

3.4 Motion Generation for Robot Platform by Means
of Optimal Control

To generate new motions for our robotic platform (a 6-DOF-KUKA arm) we
created a 6-DOF rigid-body-model of the arm. We now can compute end-effector
trajectories as results of optimal control problemswith different objective functions.
The mathematical problem is described and solved using the optimal control code
MUSCOD-II as it has been described in Sect. 3.1. In this case, we include all
limitations of our KUKA arm using the inequality constraints g.x.t/; u.t/; p/ " 0
and choose from a set of different objective functions L derived either from our
motion capture experiments or motivated from physical extremes (e.g. maximizing
the torque or minimizing the variance of the angular velocities in all joints).

The paintings created by the robot based on (a superposition of) these objective
functions will be added to the paintings already present in the framework of our
perception studies. This has two major advantages compared to human-created
paintings: First, we know the exact details about the underlying motion dynamics
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Fig. 5 Computed trajectories for joint angles (above) and comparison of computed (dots) and
measured (lines) accelerations (below)
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and can therefore derive correlationsmore easy. Second, we can easily create images
specifically suited to an area of interest in our perception study.

4 Summary

An overview of our approach to investigate the influence of dynamic motions on
modern art works was presented. We successfully reconstructed artist’s motions
from dynamic motion-capture data using a rigid-body model of the artist’s arm.
We described the advantages of our optimal control approach to this specific type of
humanmotions and portrayed the combination of several tools for perception studies
and image analysis with a robotic platform in order to uncover the subconscious
nature of action-painting motions. In the next step, we will use the motion capture
data obtained from experiments with our collaborating artist not only to reconstruct
the motion, but to use an inverse optimal control approach (like successfully used
in a similar case by Mombaur et al. in [19]) to retrieve the underlying objective
functions of these motions. To do so, we will use an efficient direct all-at-once
approach as presented by Hatz et al. in [20]. We will link these objectives both to
low-level image features detected by our image analysis framework and viewers’
judgements derived from our online-tool. That way, we aim to build a database
containing all this information as a foundation to create a feedback for the robot
painting process.
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